4.8 Article

Twin-Induced InSb Nanosails: A Convenient High Mobility Quantum System

Journal

NANO LETTERS
Volume 16, Issue 2, Pages 825-833

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.nanolett.5b05125

Keywords

III-V semiconductor; nanowires; molecular beam epitaxy; Hall measurements; quantum point contact; Cs-corrected scanning transmission electron microscopy

Funding

  1. French ANR through TERADOT [ANR-11-JS04-002-01]
  2. Ministry of Higher Education and Research, Nord-Pas de Calais
  3. Mid-Pyrenees Regional Council
  4. FEDER through Contrat de Projets Etat Region (CPER), IDEX WirOnSi
  5. Australian Research Council through Future Fellowship program [FT120100498]
  6. Generalitat de Catalunya SGR [1638]
  7. Spanish MINECO (e-ATOM) [MAT2014-51480-ERC]
  8. ICN2 Severo Ochoa Excellence Program
  9. Australian Research Council [FT120100498] Funding Source: Australian Research Council
  10. ICREA Funding Source: Custom

Ask authors/readers for more resources

Ultra narrow bandgap III-V semiconductor nanomaterials provide a unique platform for realizing advanced nanoelectronics, thermoelectrics, infrared photodetection, and quantum transport physics. In this work we employ molecular beam epitaxy to synthesize novel nanosheet-like InSb nanostructures exhibiting superior electronic performance. 1 Through careful morphological and crystallographic characterization we show how this unique geometry is the result of a single twinning event in an otherwise pure zinc blende structure. Four-terminal electrical measurements performed in both the Hall and van der Pauw configurations reveal a room temperature electron mobility greater than 12 000 cm(2).V-1.s(-1). Quantized conductance in a quantum point contact processed with a split-gate configuration is also demonstrated. We thus introduce InSb nanosails as a versatile and convenient platform for realizing new device and physics experiments with a strong interplay between electronic and spin degrees of freedom.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available