4.7 Article

Routine hypercapnic challenge after cervical spinal hemisection affects the size of phrenic motoneurons

Journal

SCIENTIFIC REPORTS
Volume 13, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41598-023-40505-x

Keywords

-

Ask authors/readers for more resources

After cervical cord injury, the adaptation of phrenic motoneurons to their smaller size occurs within weeks. This study investigates whether routine hypercapnic load can alter this adaptation. The findings suggest that a hypercapnic challenge may increase input to phrenic motoneurons and alter their propensity for adaptation.
After an individual experiences a cervical cord injury, the cell body's adaptation to the smaller size of phrenic motoneurons occurs within several weeks. It is not known whether a routine hypercapnic load can alter this adaptation of phrenic motoneurons. We investigated this question by using rats with high cervical cord hemisection. The rats were divided into four groups: control, hypercapnia, sham, and sham hypercapnia. Within 72 h post-hemisection, the hypercapnia groups began a hypercapnic challenge (20 min/day, 4 times/week for 3 weeks) with 7% CO2 under awake conditions. After the 3-week challenge, the phrenic motoneurons in all of the rats were retrogradely labeled with horseradish peroxidase, and the motoneuron sizes in each group were compared. The average diameter, cross-sectional area, and somal surface area of stained phrenic motoneurons as analyzed by software were significantly smaller in only the control group compared to the other groups. The histogram distribution was unimodal, with larger between-group size differences for motoneurons in the horizontal plane than in the transverse plane. Our findings indicate that a routine hypercapnic challenge may increase the input to phrenic motoneurons and alter the propensity for motoneuron adaptations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available