4.6 Review

Human Body-Fluid-Assisted Fracture of Zinc Alloys as Biodegradable Temporary Implants: Challenges, Research Needs and Way Forward

Journal

MATERIALS
Volume 16, Issue 14, Pages -

Publisher

MDPI
DOI: 10.3390/ma16144984

Keywords

zinc alloys; biodegradable implants; human body fluid; stress corrosion cracking; corrosion fatigue; magnesium alloys; iron alloys

Ask authors/readers for more resources

Magnesium, zinc, or iron alloys without toxic elements are attractive as construction materials for biodegradable implants. The synergistic effects of mechanical stress and corrosive human body fluid can lead to sudden and catastrophic fractures of bioimplants, such as stress corrosion cracking and corrosion fatigue. However, there has been limited investigation into SCC and CF of zinc-based implants. This article provides an overview of the challenges, research needs, and future directions in understanding SCC and CF of zinc alloys in human body fluid.
Alloys of magnesium, zinc or iron that do not contain toxic elements are attractive as construction material for biodegradable implants, i.e., the type of implants that harmlessly dissolve away within the human body after they have completed their intended task. The synergistic influence of mechanical stress and corrosive human body fluid can cause sudden and catastrophic fracture of bioimplants due to phenomena such as stress corrosion cracking (SCC) and corrosion fatigue (CF). To date, SCC and CF of implants based on Zn have scarcely been investigated. This article is an overview of the challenges, research needs and way forward in understanding human body-fluid-assisted fractures (i.e., SCC and CF) of Zn alloys in human body fluid.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available