4.8 Article

Complementarity-determining region clustering may cause CAR-T cell dysfunction

Journal

NATURE COMMUNICATIONS
Volume 14, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41467-023-40303-z

Keywords

-

Ask authors/readers for more resources

Chimeric antigen receptor (CAR)-T cell therapy is an important advancement in cancer treatment. However, designing an optimal CAR is challenging due to the presence of complementarity-determining regions (CDRs), which can cause CAR clustering and result in antigen-independent tonic signalling and subsequent CAR-T cell dysfunction.
Chimeric antigen receptor (CAR)-T cell therapy is rapidly advancing as cancer treatment, however, designing an optimal CAR remains challenging. A single-chain variable fragment (scFv) is generally used as CAR targeting moiety, wherein the complementarity-determining regions (CDRs) define its specificity. We report here that the CDR loops can cause CAR clustering, leading to antigen-independent tonic signalling and subsequent CAR-T cell dysfunction. We show via CARs incorporating scFvs with identical framework and varying CDR sequences that CARs may cluster on the T cell surface, which leads to antigen-independent CAR-T cell activation, characterized by increased cell size and interferon (IFN)-& gamma; secretion. This results in CAR-T cell exhaustion, activation-induced cell death and reduced responsiveness to target-antigen-expressing tumour cells. CDR mutagenesis confirms that the CAR-clustering is mediated by CDR-loops. In summary, antigen-independent tonic signalling can be induced by CDR-mediated CAR clustering, which could not be predicted from the scFv sequences, but could be tested for by evaluating the activity of unstimulated CAR-T cells. The challenge of designing chimeric antigen receptor (CAR)-T cells for cancer therapy is not limited to finding targetable cellular proteins, but also in optimising the effector properties. Here authors show that single-chain variable fragment targeting moieties could unpredictably prompt spontaneous CAR-T cell activation via CAR clustering, which argues for empirical screening for tonic signalling.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available