4.8 Article

Tensorial stress-plastic strain fields in α - ω Zr mixture, transformation kinetics, and friction in diamond-anvil cell

Journal

NATURE COMMUNICATIONS
Volume 14, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41467-023-41680-1

Keywords

-

Ask authors/readers for more resources

This study investigates the effects of stress and plastic strain tensors on various phenomena under high pressures in diamond-anvil cells. The authors suggest a coupled experimental-analytical-computational approach to measure these tensors and friction rules in the material using synchrotron X-ray diffraction. The results are in good agreement with experiments and open opportunities for quantitative high-pressure/stress science.
Various phenomena (phase transformations (PTs), chemical reactions, microstructure evolution, strength, and friction) under high pressures in diamond-anvil cell are strongly affected by fields of stress and plastic strain tensors. However, they could not be measured. Here, we suggest coupled experimental-analytical-computational approaches utilizing synchrotron X-ray diffraction, to solve an inverse problem and find fields of all components of stress and plastic strain tensors and friction rules before, during, and after alpha-omega PT in strongly plastically predeformed Zr. Results are in good correspondence with each other and experiments. Due to advanced characterization, the minimum pressure for the strain-induced alpha-omega PT is changed from 1.36 to 2.7 GPa. It is independent of the plastic strain before PT and compression-shear path. The theoretically predicted plastic strain-controlled kinetic equation is verified and quantified. Obtained results open opportunities for developing quantitative high-pressure/stress science, including mechanochemistry, synthesis of new nanostructured materials, geophysics, astrogeology, and tribology. Fields of stress and plastic strain tensors in a sample under high pressures in diamond-anvil cells are important, but measuring them is difficult. Here, the authors suggest a coupled experimental-analytical-computational approach to measure them before, during, and after alpha-omega transformation in Zr.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available