4.8 Article

In vitro and in vivo characterization of SARS-CoV-2 strains resistant to nirmatrelvir

Journal

NATURE COMMUNICATIONS
Volume 14, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41467-023-39704-x

Keywords

-

Ask authors/readers for more resources

In this study, the authors characterized mutant viruses with reduced sensitivity to nirmatrelvir, an oral antiviral agent that targets SARS-CoV-2. They found that these mutant viruses showed a slower growth rate and attenuated phenotypes in infection models. However, it is important to closely monitor the emergence of nirmatrelvir-resistant SARS-CoV-2 variants as they could potentially become dominant.
Resistance to nirmatrelvir, an oral antiviral agent that targets SARS-CoV-2 and is clinically useful against infection with Omicron variants, is currently not well understood. In this study, the authors characterize mutant viruses with reduced sensitivity to nirmatrelvir in vitro and in vivo. Nirmatrelvir, an oral antiviral agent that targets a SARS-CoV-2 main protease (3CLpro), is clinically useful against infection with SARS-CoV-2 including its omicron variants. Since most omicron subvariants have reduced sensitivity to many monoclonal antibody therapies, potential SARS-CoV-2 resistance to nirmatrelvir is a major public health concern. Several amino acid substitutions have been identified as being responsible for reduced susceptibility to nirmatrelvir. Among them, we selected L50F/E166V and L50F/E166A/L167F in the 3CLpro because these combinations of substitutions are unlikely to affect virus fitness. We prepared and characterized delta variants possessing Nsp5-L50F/E166V and Nsp5-L50F/E166A/L167F. Both mutant viruses showed decreased susceptibility to nirmatrelvir and their growth in VeroE6/TMPRSS2 cells was delayed. Both mutant viruses showed attenuated phenotypes in a male hamster infection model, maintained airborne transmissibility, and were outcompeted by wild-type virus in co-infection experiments in the absence of nirmatrelvir, but less so in the presence of the drug. These results suggest that viruses possessing Nsp5-L50F/E166V and Nsp5-L50F/E166A/L167F do not become dominant in nature. However, it is important to closely monitor the emergence of nirmatrelvir-resistant SARS-CoV-2 variants because resistant viruses with additional compensatory mutations could emerge, outcompete the wild-type virus, and become dominant.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available