4.8 Article

Cascaded metasurfaces for high-purity vortex generation

Journal

NATURE COMMUNICATIONS
Volume 14, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41467-023-42137-1

Keywords

-

Ask authors/readers for more resources

The authors demonstrate an efficient way to generate high-purity vortex beams by applying optical neural networks to cascaded phase-only metasurfaces. Specifically, they present record-high-quality Laguerre-Gaussian (LGp,l) optical modes with polynomial orders p = 10 and l = 200 with purity in p, l and relative conversion efficiency of 96%, 85%, and 70%, respectively.
We introduce a new paradigm for generating high-purity vortex beams with metasurfaces. By applying optical neural networks to a system of cascaded phase-only metasurfaces, we demonstrate the efficient generation of high-quality Laguerre-Gaussian (LG) vortex modes. Our approach is based on two metasurfaces where one metasurface redistributes the intensity profile of light in accord with Rayleigh-Sommerfeld diffraction rules, and then the second metasurface matches the required phases for the vortex beams. Consequently, we generate high-purity LGp,l optical modes with record-high Laguerre polynomial orders p = 10 and l = 200, and with the purity in p, l and relative conversion efficiency as 96.71%, 85.47%, and 70.48%, respectively. Our engineered cascaded metasurfaces suppress greatly the backward reflection with a ratio exceeding -17 dB. Such higher-order optical vortices with multiple orthogonal states can revolutionize next-generation optical information processing. The authors demonstrate an efficient way to generate high-purity vortex beams by applying optical neural networks to cascaded phase-only metasurfaces. Specifically, they present record-high-quality Laguerre-Gaussian (LGp,l) optical modes with polynomial orders p = 10 and l = 200 with purity in p, l and relative conversion efficiency of 96%, 85%, and 70%, respectively.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available