4.8 Article

Regulating interfacial reaction through electrolyte chemistry enables gradient interphase for low-temperature zinc metal batteries

Journal

NATURE COMMUNICATIONS
Volume 14, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41467-023-41276-9

Keywords

-

Ask authors/readers for more resources

By regulating the sequence of chemical reactions, the authors managed to form a gradient phosphatized interphase on the zinc surface, accelerating the transportation and desolvation of zinc ions and improving the cycling performance of zinc metal batteries at low temperatures.
In situ formation of a stable interphase layer on zinc surface is an effective solution to suppress dendrite growth. However, the fast transport of bivalent Zn-ions within the solid interlayer remains very challenging. Herein, we engineer the SEI components and enable superior kinetics of Zn metal batteries under harsh conditions through regulating the sequence of interfacial chemical reaction. With the differences in chemical reactivity of trimethyl phosphate co-solvent and trifluoromethanesulfonate anions in the Zn2+-solvation shell, Zn3(PO4)2 and ZnF2 are successively generated on Zn metal surface to form a gradient ZnF2-Zn3(PO4)2 interphase. Mechanistic studies reveal the outer ZnF2 facilitates Zn2+ desolvation and inner Zn3(PO4)2 serves as channels for fast Zn2+ transport, contributing to long-term cycling at subzero temperatures. Impressively, the gradient SEI enables a high lifespan over 7000 hours in Zn symmetric cell and a capacity retention of 86.1% after 12000 cycles in Zn-KVOH full cell at -50 & DEG;C. Zinc batteries have received intense attentions but suffer from inferior low-temperature performance. Here, the authors constructed a gradient phosphatized interphase in situ on zinc surface to accelerate zinc-ion desolvation and transport, greatly enhancing the cycling performance at subzero temperatures.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available