4.8 Article

Tailoring grain boundary stability of zinc-titanium alloy for long-lasting aqueous zinc batteries

Journal

NATURE COMMUNICATIONS
Volume 14, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41467-023-42919-7

Keywords

-

Ask authors/readers for more resources

In this study, the authors demonstrate that preferential distribution of intermetallic compounds at grain boundaries can effectively suppress intergranular corrosion and tailor deposition behavior, leading to stable aqueous zinc batteries. The high reversibility of the zinc anode reaches 99.85% over 4000 cycles.
The detrimental parasitic reactions and uncontrolled deposition behavior derived from inherently unstable interface have largely impeded the practical application of aqueous zinc batteries. So far, tremendous efforts have been devoted to tailoring interfaces, while stabilization of grain boundaries has received less attention. Here, we demonstrate that preferential distribution of intermetallic compounds at grain boundaries via an alloying strategy can substantially suppress intergranular corrosion. In-depth morphology analysis reveals their thermodynamic stability, ensuring sustainable potency. Furthermore, the hybrid nucleation and growth mode resulting from reduced Gibbs free energy contributes to the spatially uniform distribution of Zn nuclei, promoting the dense Zn deposition. These integrated merits enable a high Zn reversibility of 99.85% for over 4000 cycles, steady charge-discharge at 10 mA cm-2, and impressive cyclability for roughly 3500 cycles in Zn-Ti//NH4V4O10 full cell. Notably, the multi-layer pouch cell of 34 mAh maintains stable cycling for 500 cycles. This work highlights a fundamental understanding of microstructure and motivates the precise tuning of grain boundary characteristics to achieve highly reversible Zn anodes. The electrochemical performance of metal electrodes is significantly influenced by their grain boundary stability. Here, the authors propose a zinc-titanium two-phase alloy via grain boundary engineering to inhibit intergranular corrosion and tailor deposition behavior for stable aqueous zinc batteries.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available