4.5 Article

Unleashing the Potential of 1,3-Diketone Analogues as Selective LH2 Inhibitors

Journal

ACS MEDICINAL CHEMISTRY LETTERS
Volume 14, Issue 10, Pages 1396-1403

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsmedchemlett.3c00305

Keywords

Lysyl hydroxylase 2; LH2; & alpha;-Ketoglutarate; Hydroxylysine aldehyde-derived collagen cross-links; HLCC; Collagen; Inhibitor

Ask authors/readers for more resources

Lysyl hydroxylase 2 (LH2) plays a crucial role in promoting lung cancer metastasis by modulating specific types of collagen cross-links within the tumor stroma. Compounds 12 and 13 demonstrate selective inhibition of LH2 activity and reduce cell migration potential.
Lysyl hydroxylase 2 (LH2) catalyzes the formation of highly stable hydroxylysine aldehyde-derived collagen cross-links (HLCCs), thus promoting lung cancer metastasis through its capacity to modulate specific types of collagen cross-links within the tumor stroma. Using 1 and 2 from our previous high-throughput screening (HTS) as lead probes, we prepared a series of 1,3-diketone analogues, 1-18, and identified 12 and 13 that inhibit LH2 with IC50's of approximately 300 and 500 nM, respectively. Compounds 12 and 13 demonstrate selectivity for LH2 over LH1 and LH3. Quantum mechanics/molecular mechanics (QM/MM) modeling indicates that the selectivity of 12 and 13 may stem from noncovalent interactions like hydrogen bonding between the morpholine/piperazine rings with the LH2-specific Arg661. Treatment of 344SQ WT cells with 13 resulted in a dose-dependent reduction in their migration potential, whereas the compound did not impede the migration of the same cell line with an LH2 knockout (LH2KO).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available