4.8 Article

Flushing away the future: The effects of wastewater treatment plants on aquatic invertebrates

Journal

WATER RESEARCH
Volume 243, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2023.120388

Keywords

Pollution; Taxonomic composition; Species turnover; Diversity indices; Freshwater invertebrates; Sewage treatment plant

Ask authors/readers for more resources

Wastewater treatment plants are essential but ineffective at removing micropollutants from treated effluents before releasing them into aquatic environments, which can negatively impact freshwater fauna and insect communities. This study comprehensively investigated the effects of 170 WWTPs on invertebrate taxonomic composition and found that pollution tolerant taxa were favored while sensitive taxa were negatively impacted downstream of WWTPs.
Wastewater treatment plants (WWTP) are essential infrastructure in our developing world. However, with the development and release of novel entities and without modern upgrades, they are ineffective at fully removing micropollutants before treated effluents are released back into aquatic environments. Thus, WWTPs may represent additional point source impacts to freshwater environments, further pressuring aquatic fauna and already vulnerable insect communities. Previous studies - mostly focusing on single WWTPs - have shown general trends of freshwater invertebrate communities becoming dominated by pollution tolerant taxa. To expand on these findings, the current study is the first to comprehensively investigate data on the effects of 170 WWTPs on invertebrate taxonomic composition. We compared data for several diversity and pollution indices, as well as the taxonomic composition both upstream and downstream of the WWTPs (366 sampling sites). In terms of abundance, the three most frequent and negatively impacted orders were the Plecoptera, Trichoptera and Gastropoda, while the Turbellaria, Hirudinea and Crustacea increased in abundance. Although strong changes in community composition were observed between upstream and downstream sites (mean species turnover of 61%), commonly used diversity indices were not sensitive to these changes, highlighting their potential inadequacy in accurately assessing ecological health. Our results indicate that WWTPs change downstream conditions in favour of pollution tolerant taxa to the detriment of sensitive taxa. Order-level taxonomic responses can be informative but should be interpreted with caution, since they can be driven by a few taxa, or opposing responses of species in the same group can result in an overall low order-level response. Upgrading WWTPs via additional treatment steps or merging may be beneficial, provided upstream sections are unimpacted and/or are in a good chemical and structural condition.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available