4.8 Article

Redistribution of perfluorooctanoic acid in sludge after thermal hydrolysis: Location of protein plays a major role

Journal

WATER RESEARCH
Volume 241, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2023.120135

Keywords

Recalcitrant pollutants; Redistribution in sludge; Perfluorooctanoic acid; Sludge pretreatment; Dissolved organic compounds

Ask authors/readers for more resources

This study developed a hierarchical scheme to identify the key factors contributing to the elevation of free PFOA during the thermal hydrolysis pretreatment (THP) process. The relative abundance of PFOA in the liquid phase increased during THP, while changes in pH, zeta potential, ionic condition, and specific surface area had negligible impact on PFOA redistribution. The study provides valuable insights into how sludge transformations regulate the distribution of PFCs and guide the selection of treatment processes.
Perfluorinated compounds (PFCs) are a group of bio-recalcitrant pollutants that remain in waste activated sludge and may subsequently be transferred with sludge to thermal hydrolysis pretreatment (THP) process. Instead of reduction, it is observed previously that the concentration of free PFCs elevated after THP. By employing per-fluorooctanoic acid (PFOA) as a representative, this study developed a hierarchical scheme to pinpoint the key factors that contribute to free PFOA elevation from the complex sludge transformations. According to the results, the relative abundance of PFOA in the liquid phase increased by 11.7 - 22.9% during THP. In the solid phase, the amide groups reduction and the spatial structure change of proteins weakened the sorption capability of solids for PFOA. In the liquid phase, the increase of proteins, which could bind and form static hindrance to regulate the behavior of PFOA, was the main factor to retain PFOA in liquid. In contrast, other sludge transformations including changes in pH, zeta potential, ionic condition and specific surface area, displayed insignificant impact on the redistribution process. The study presents a detailed picture on how sludge transformations would regulate PFCs distribution that ultimately direct the selection of further treatment processes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available