4.6 Article

Three-dimensional lithography by elasto-capillary engineering of filamentary materials

Journal

MRS BULLETIN
Volume 41, Issue 2, Pages 108-114

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1557/mrs.2016.4

Keywords

-

Funding

  1. Mechanical Science and Engineering Department at the University of Illinois at Urbana-Champaign
  2. MICROMAST program [IAP 7/38]
  3. BELSPO

Ask authors/readers for more resources

Surface textures with three-dimensional (3D) architectures demonstrate the ability to control interfacial, optical, chemical, and mechanical properties. Potential applications range from device-scale biomolecule sensing to meter-scale optical or nonwetting coatings. In recent years, capillary forming has become a versatile and scalable approach to creating complex geometries at the nano- and micron scales. Surface tension of a liquid can deform straight pillars and assemble them into 3D architectures with predetermined orientation, where short-range adhesion forces stabilize the final forms. A variety of techniques have been demonstrated for carbon nanotubes and polymer filamentary materials to fabricate useful devices and textures. We discuss these materials and processes as well as the underlying elasto-capillary physics. We indicate the need for new simulation tools to design and engineer elasto-capillary transformations and methods to increase their throughput toward scalable manufacturing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available