4.7 Article

Design method of axial compression stability for cross-section corrugated plate steel special-shaped column

Journal

THIN-WALLED STRUCTURES
Volume 194, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.tws.2023.111243

Keywords

Cross-section special -shaped column; Corrugated plate steel structure; Axial compression stability; Flexural buckling; Torsional buckling; Design method

Ask authors/readers for more resources

This paper proposes a crosssection corrugated plate steel special-shaped column (CCSC) that improves the bearing capacity and overall stability of structural columns by using smaller material input. Through theoretical analysis and numerical simulation, the overall stability of the CCSC under axial compression is analyzed. The design method and suggestions for the stability of CCSC are put forward. Compared with conventional square steel tube columns, the CCSC has obvious advantages in overall stability and steel consumption.
Obtaining a larger moment of inertia and overall stability with smaller material input, which is an effective way to improve the bearing capacity and reduce the self-weight of structural columns. This paper proposes a crosssection corrugated plate steel special-shaped column (CCSC), which is based on the optimization design idea of steel profiled-shaped column section, combined with the comprehensive consideration of the overall stability of steel structure column members, material use efficiency and building interior space utilization rate. The new CCSC is composed of three parts: core square steel pipe, corrugated plate, and flange plate. The high-out-of-plane stiffness characteristic of corrugated plate is utilized to improve the section rotation radius. The three parts above are coordinated to resist lateral load. The square steel pipe and flange plate are the main vertical bearing plates. The new special-shaped column can obtain a larger moment of inertia and overall stability with a smaller material input, thus improving the bearing capacity. Through the combination of theoretical analysis and numerical simulation, the overall stability of the axial compression of CCSC are analyzed, and the instability modes and failure modes of CCSC are revealed. The design method and suggestions for the stability of CCSC under axial compression are put forward. Then, the overall stability design and application suggestion based on conventional square steel tube is given. The results show that the stability design method of CCSC under axial compression can effectively judge the instability mode of CCSC and obtain the ultimate bearing capacity of the whole member. Compared with square steel tube columns with regularized slenderness ratio greater than 0.8 in structural design, the CCSC has obvious advantages in overall stability and steel consumption.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available