4.7 Article

Pyramiding Fusarium head blight resistance QTL from T. aestivum, T. dicoccum and T. dicoccoides in durum wheat

Journal

THEORETICAL AND APPLIED GENETICS
Volume 136, Issue 9, Pages -

Publisher

SPRINGER
DOI: 10.1007/s00122-023-04426-7

Keywords

-

Ask authors/readers for more resources

Durum wheat lines were analyzed to investigate the genetic basis of Fusarium head blight (FHB) resistance. A broad variation in FHB resistance was observed among the lines, with anthesis date and plant height strongly influencing FHB severities. Seven quantitative trait loci (QTL) affecting FHB severities were identified, including the highly significant Fhb1 QTL from hexaploid wheat.
Durum wheat is particularly susceptible to Fusarium head blight (FHB) and breeding for resistance is impeded by the low genetic variation within the elite gene pool. To extend the genetic basis for FHB resistance in durum wheat, we analyzed 603 durum wheat lines from crosses of elite durum wheat with resistance donors carrying resistance alleles derived from Triticum aestivum, T. dicoccum and T. dicoccoides. The lines were phenotyped for FHB resistance, anthesis date, and plant height in artificially inoculated disease nurseries over 5 years. A broad variation was found for all traits, while anthesis date and plant height strongly influenced FHB severities. To correct for spurious associations, we adjusted FHB scorings for temperature fluctuations during the anthesis period and included plant height as a covariate in the analysis. This resulted in the detection of seven quantitative trait loci (QTL) affecting FHB severities. The hexaploid wheat-derived Fhb1 QTL was most significant on reducing FHB severities, highlighting its successful introgression into several durum wheat backgrounds. For two QTL on chromosomes 1B and 2B, the resistance alleles originated from the T. dicoccum line Td161 and T. dicoccoides accessions Mt. Hermon#22 and Mt. Gerizim#36, respectively. The other four QTL featured unfavorable alleles derived from elite durum wheat that increased FHB severities, with a particularly negative effect on chromosome 6A that simultaneously affected plant height and anthesis date. Therefore, in addition to pyramiding resistance genes, selecting against adverse alleles present in elite durum wheat could be a promising avenue in breeding FHB-resistant durum wheat.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available