4.5 Article

Examining the past 120 years' climate dynamics of Ethiopia

Journal

THEORETICAL AND APPLIED CLIMATOLOGY
Volume -, Issue -, Pages -

Publisher

SPRINGER WIEN
DOI: 10.1007/s00704-023-04572-4

Keywords

Drought-prone; CRU; Climate change; Climate variability; Rainfall seasonality; East Africa

Ask authors/readers for more resources

This study examined the spatiotemporal variability and trends of rainfall and temperature in Ethiopia from 1901 to 2020. The results showed that inter-seasonal variability of rainfall and temperature was more pronounced than interannual variability. Only a small percentage of the country experienced statistically significant decreasing and increasing trends of rainfall, while there was a significant increasing trend of temperature. This study suggests the need for more attention and further research on climate change-sensitive zones in Ethiopia.
Climate change is one of the environmental threats around the globe. However, this change is not uniform throughout the world, both spatially and temporally. This study, therefore, examined the spatiotemporal (annual and seasonal) variability and trends of rainfall and temperature over Ethiopia from 1901 to 2020. Monthly rainfall and temperature (maximum, minimum, and mean) data were extracted from the latest version of the Climatic Research Unit (CRU 4.05) dataset. Using long-term seasonal rainfall patterns and pixel-based correlation techniques, five homogeneous rainfall zones were identified. The rainfall and temperature from CRU were validated using observed data from 235 and 145 meteorological stations, respectively. The results revealed that inter-seasonal rainfall and temperature variabilities are more pronounced than interannual variabilities in all rainfall zones. Only 19% (215,700 km(2)) and 3% (33, 900 km(2)) of the country's total area experienced statistically significant (& alpha; = 0.05) decreasing and increasing trends of rainfall, respectively from 1901 to 2020. A statistically significant decreasing trend in rainfall with time was observed during the summer in only one zone that received rainfall in all months. A precipitation concentration index analysis revealed that the country exhibited a moderate to strongly irregular annual and seasonal rainfall distribution, except during the summer when the rainfall distribution was uniform. There was hence a high degree of rainfall seasonality throughout the study period. In addition to the devastating 1984 nationwide drought, Ethiopia also experienced local droughts for a number of 10 to 20 years. Unlike rainfall, there was a significant (& alpha; = 0.05) spatiotemporal increasing trend of temperature over the country. The spatial and temporal increasing trend of mean temperature over 120 years ranged from 0.24(o)C to 1.92(o)C and 0.72(o)C to 1.08(o)C, respectively. This increasing trend was higher in two zones located in the western and northwest parts of Ethiopia and the inflection points occurred after the 1970s in all zones. It is noteworthy that the maximum temperature increased at a lower rate than the minimum temperature. The warming trends and changes in rainfall patterns are likely to increase the frequency of climate extreme events and impact ecosystem services. This study suggests that climate change-sensitive zones require more attention and further study to enhance awareness of climate change in Ethiopia and facilitate adaptation to climate change and inform actions to mitigate adverse effects.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available