4.3 Article

Polyamines modulate mouse sperm motility

Journal

SYSTEMS BIOLOGY IN REPRODUCTIVE MEDICINE
Volume 69, Issue 6, Pages 435-449

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/19396368.2023.2262714

Keywords

Spermatozoa; motility; soluble adenylyl cyclase; capacitation; acrosome reaction

Ask authors/readers for more resources

This study evaluated the effects of spermine, spermidine, and putrescine on sperm motility, capacitation, and acrosome reaction. The results showed that polyamines significantly decreased these parameters and may act by inhibiting the activity of sAC. Furthermore, polyamines also caused a decrease in cAMP concentration.
Polyamines are polycationic molecules which contains two or more amino groups (-NH3+) highly charged at physiological pH, and among them we found spermine, spermidine, putrescine, and cadaverine. They interact with proteins, nucleic acids, modulate Ca2+, K+, and Na+ channels, and protect sperm from oxidative stress. In this work, we evaluate the effect of spermine, spermidine, and putrescine on the total, progressive and kinematic parameters of motility, capacitation, acrosome reaction, also in presence and absence of the dbcAMP, an analogue of the cAMP, and the IBMX, a phosphodiesterase inhibitor. In addition, we evaluated the intracellular concentrations of cAMP [cAMP]i, and performed an in silico analysis between polyamines and the sAC from mouse to predict the possible interaction among them. Our results showed that all polyamines decrease drastically the total, progressive and the kinetic parameters of sperm motility, decrease the capacitation, and only spermidine and putrescine impeded the acquisition of acrosome reaction. Moreover, the effect of polyamines was attenuated but not countered by the addition of db-cAMP and IBMX, suggesting a possible inhibition of the sAC. Also, the presence of polyamines induced a decrease of the [cAMP]i, and the in silico analysis predicted a strong interaction among polyamines and the sAC. Overall, the evidence suggests that probably the polyamines interact and inhibit the activity of the sAC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available