4.4 Article

Exploring the effects of potassium-doping on the reactive oxygen species of CeO2 (110) for formaldehyde catalytic oxidation: A DFT study

Journal

SURFACE SCIENCE
Volume 740, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.susc.2023.122415

Keywords

HCHO; Potassium; CeO2; Reactive oxygen species; Hydroxyl group

Ask authors/readers for more resources

The influence of K-doping on the reactive oxygen species and elementary reactions of HCHO catalytic oxidation was investigated using density functional theory (DFT). The introduction of K-doping changed the electronic structures of Ce and O, facilitating the adsorption and activation of HCHO and O2 molecules, enhancing lattice oxygen mobility, and reducing the energy barrier for HCHO oxidation. K-doping also promoted the formation of hydroxyl groups, facilitating HCHO adsorption and oxidation.
The influence of K-doping on the reactive oxygen species and elementary reactions of HCHO catalytic oxidation has not been well understood. Herein, a density functional theory (DFT) study was conducted and found that the introduction of K-doping advantageously changed the electronic structures of both Ce and O atoms on the (110) crystal plane of CeO2. This change, in turn, facilitated the adsorption and activation of HCHO and O2 molecules, enhanced the mobility of lattice oxygen, and reduced the energy barrier associated with HCHO oxidation. The adsorbed oxygen species were generated through the direct dissociation of O2 on the CeO2 (110) surface. However, in the case of K-CeO2 (110), it was more probable for the adsorbed oxygen species to be produced by gaseous O2 filling the oxygen vacancy, followed by dissociation. Additionally, the incorporation of K-doping proved to be advantageous in facilitating the formation of hydroxyl groups by promoting the dissociation of water molecules. The inclusion of hydroxyl groups facilitated the HCHO adsorption and reduced the energy barrier for its subsequent oxidation. The findings provide new insights into the development of novel catalysts for HCHO removal with high performance through alkali metal modification.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available