4.7 Article

Assessing the alerting capabilities of the Earthquake Network early warning system in Haiti with Monte Carlo simulations

Ask authors/readers for more resources

This study uses a Monte Carlo simulation framework to analyze the impact of smartphone network geometry on the earthquake detection capability and system performance of earthquake early warning systems. The study finds that the earthquake early warning system in Haiti may provide warning times of up to 12 seconds for high-intensity areas with low citizen involvement.
Smartphone-based earthquake early warning systems implemented by citizen science initiatives are characterised by significant variability in their smartphone network geometry. This has a direct impact on the earthquake detection capability and system performance. Here, a Monte Carlo-based simulation framework is implemented to infer relevant earthquake detection quantities such as detection distance from the epicentre, detection delay, and warning time for people exposed to high ground shaking levels. The framework is applied to Haiti, which has experienced deadly earthquakes in recent decades, and to the Earthquake Network citizen science initiative, which is popular in the country. It is found that warning times of up to 12 s for people exposed to intensities between 7.5 and 8.5 on the modified Mercalli scale are possible starting from a relatively low involvement of citizens in the initiative (i.e., from 1 Haitian in 10,000).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available