4.5 Review

Magma Ocean, Water, and the Early Atmosphere of Venus

Journal

SPACE SCIENCE REVIEWS
Volume 219, Issue 7, Pages -

Publisher

SPRINGER
DOI: 10.1007/s11214-023-00995-7

Keywords

Venus; Interior evolution; Atmosphere; Degassing

Ask authors/readers for more resources

The current state and surface conditions of Earth and Venus differ greatly, with water playing a key role in these differences. This chapter reviews the outcomes of the accretion sequence and discusses the early thermo-chemical evolution of molten terrestrial planets and its impact on the abundance and distribution of water. The implications of these findings for the surface conditions and habitability are discussed, and future research directions and observations are proposed to further understand the evolution of Venus.
The current state and surface conditions of the Earth and its twin planet Venus are drastically different. Whether these differences are directly inherited from the earliest stages of planetary evolution, when the interior was molten, or arose later during the long-term evolution is still unclear. Yet, it is clear that water, its abundance, state, and distribution between the different planetary reservoirs, which are intimately related to the solidification and outgassing of the early magma ocean, are key components regarding past and present-day habitability, planetary evolution, and the different pathways leading to various surface conditions.In this chapter we start by reviewing the outcomes of the accretion sequence, with particular emphasis on the sources and timing of water delivery in light of available constraints, and the initial thermal state of Venus at the end of the main accretion. Then, we detail the processes at play during the early thermo-chemical evolution of molten terrestrial planets, and how they can affect the abundance and distribution of water within the different planetary reservoirs. Namely, we focus on the magma ocean cooling, solidification, and concurrent formation of the outgassed atmosphere. Accounting for the possible range of parameters for early Venus and based on the mechanisms and feedbacks described, we provide an overview of the likely evolutionary pathways leading to diverse surface conditions, from a temperate to a hellish early Venus. The implications of the resulting surface conditions and habitability are discussed in the context of the subsequent long-term interior and atmospheric evolution. Future research directions and observations are proposed to constrain the different scenarios in order to reconcile Venus' early evolution with its current state, while deciphering which path it followed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available