4.7 Article

Intrinsic alignments of BOSS LOWZ galaxies - II. Impact of shape measurement methods

Journal

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Volume 457, Issue 3, Pages 2301-2317

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/mnras/stw144

Keywords

gravitational lensing: weak; galaxies: evolution; cosmology: observations; large-scale structure of Universe

Funding

  1. National Science Foundation [AST-1313169]
  2. Alfred P. Sloan Fellowship
  3. Alfred P. Sloan Foundation
  4. National Science Foundation
  5. U.S. Department of Energy Office of Science
  6. University of Arizona
  7. Brazilian Participation Group
  8. Brookhaven National Laboratory
  9. Carnegie Mellon University
  10. University of Florida
  11. French Participation Group
  12. German Participation Group
  13. Harvard University
  14. Instituto de Astrofisica de Canarias
  15. Michigan State/Notre Dame/JINA Participation Group
  16. Johns Hopkins University
  17. Lawrence Berkeley National Laboratory
  18. Max Planck Institute for Astrophysics
  19. Max Planck Institute for Extraterrestrial Physics
  20. New Mexico State University
  21. New York University
  22. Ohio State University
  23. Pennsylvania State University
  24. University of Portsmouth
  25. Princeton University
  26. Spanish Participation Group
  27. University of Tokyo
  28. University of Utah
  29. Vanderbilt University
  30. University of Virginia
  31. University of Washington
  32. Yale University
  33. Direct For Mathematical & Physical Scien
  34. Division Of Astronomical Sciences [1313169] Funding Source: National Science Foundation

Ask authors/readers for more resources

Measurements of intrinsic alignments of galaxy shapes with the large-scale density field, and the inferred intrinsic alignments model parameters, are sensitive to the shape measurement methods used. In this paper, we measure the intrinsic alignments of the Sloan Digital Sky Survey-III (SDSS-III) Baryon Oscillation Spectroscopic Survey (BOSS) low redshift (LOWZ) galaxies using three different shape measurement methods (re-Gaussianization, isophotal, and de Vaucouleurs), identifying a variation in the inferred intrinsic alignments amplitude at the 40 per cent level between these methods, independent of the galaxy luminosity or other properties. We also carry out a suite of systematics tests on the shapes and their two-point correlation functions, identifying a pronounced contribution from additive point spread function systematics in the de Vaucouleurs shapes. Since different methods measure galaxy shapes at different effective radii, the trends we identify in the intrinsic alignments amplitude are consistent with the interpretation that the outer regions of galaxy shapes are more responsive to tidal fields, resulting in isophote twisting and stronger alignments for isophotal shapes. We observe environment dependence of ellipticity, with brightest galaxies in groups being rounder on average compared to satellite and field galaxies. We also study the anisotropy in intrinsic alignments measurements introduced by projected shapes, finding effects consistent with predictions of the non-linear alignment model and hydrodynamic simulations. The large variations seen using the different shape measurement methods have important implications for intrinsic alignments forecasting and mitigation with future surveys.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available