4.8 Article

Kinetics of Light-Responsive CNT / PNIPAM Hydrogel Microactuators

Journal

SMALL
Volume -, Issue -, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.202305034

Keywords

carbon nanotubes (CNTs); hydrogel; light actuation; microactuator; soft robotics; vertically aligned CNTs

Ask authors/readers for more resources

Light-responsive microactuators composed of carbon nanotube and hydrogel composites exhibit efficient radiative heating capture and fast response time. The kinetics of these microactuators are limited by polymer diffusion. Additionally, these actuators have potential applications as microswimmers.
Light-responsive microactuators composed of vertically aligned carbon nanotube (CNT) forests mixed with poly(N-isopropylacrylamide) (PNIPAM) hydrogel composites are studied. The benefit of this composite is that CNTs act as a black absorber to efficiently capture radiative heating and trigger PNIPAM contraction. In addition, CNT forests can be patterned accurately using lithography to span structures ranging from a few micrometers to several millimeters in size, and these CNT-PNIPAM composites can achieve response times as fast as 15 ms. The kinetics of these microactuators are investigated through detailed analysis of high-speed videos. These are compared to a theoretical model for the deswelling dynamics, which combines thermal convection and polymer diffusion, and shows that polymer diffusion is the rate-limiting factor in this system. Applications of such CNT/hydrogel actuators as microswimmers are discussed, with light-actuating micro-jellyfish designs exemplified, and >1500 cycles demonstrated.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available