4.7 Article

Oxygen abundance maps of CALIFA galaxies

Journal

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Volume 462, Issue 3, Pages 2715-2733

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/mnras/stw1857

Keywords

ISM: abundances; H II regions; galaxies: abundances

Funding

  1. German Research Foundation (DFG) [SFB 881]
  2. Volkswagen Foundation [90411]
  3. NASU under the Main Astronomical Observatory GRID/GPU computing cluster GOLOWOOD project
  4. National Aeronautics and Space Administration's Earth Science Technology Office, Computational Technnologies Project [NCC5-626]
  5. Alfred P. Sloan Foundation
  6. National Science Foundation
  7. US Department of Energy
  8. National Aeronautics and Space Administration
  9. Japanese Monbukagakusho
  10. Max Planck Society
  11. Higher Education Funding Council for England
  12. [CONACYT-125180]
  13. [DGAPA-IA100815]

Ask authors/readers for more resources

We construct maps of the oxygen abundance distribution across the discs of 88 galaxies using Calar Alto Legacy Integral Field Area survey (CALIFA) Data Release 2 (DR2) spectra. The position of the centre of a galaxy (coordinates on the plate) was also taken from the CALIFA DR2. The galaxy inclination, the position angle of the major axis, and the optical radius were determined from the analysis of the surface brightnesses in the Sloan Digital Sky Survey (SDSS) g and r bands of the photometric maps of SDSS Data Release 9. We explore the global azimuthal abundance asymmetry in the discs of the CALIFA galaxies and the presence of a break in the radial oxygen abundance distribution. We found that there is no significant global azimuthal asymmetry for our sample of galaxies, i.e. the asymmetry is small, usually lower than 0.05 dex. The scatter in oxygen abundances around the abundance gradient has a comparable value, less than or similar to 0.05 dex. A significant (possibly dominant) fraction of the asymmetry can be attributed to the uncertainties in the geometrical parameters of these galaxies. There is evidence for a flattening of the radial abundance gradient in the central part of 18 galaxies. We also estimated the geometric parameters (coordinates of the centre, the galaxy inclination and the position angle of the major axis) of our galaxies from the analysis of the abundance map. The photometry-map-based and the abundance-map-based geometrical parameters are relatively close to each other for the majority of the galaxies but the discrepancy is large for a few galaxies with a flat radial abundance gradient.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available