4.7 Article

LITTLE THINGS in 3D: robust determination of the circular velocity of dwarf irregular galaxies

Journal

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Volume 466, Issue 4, Pages 4159-4192

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/mnras/stw3285

Keywords

galaxies: dwarf; galaxies: ISM; galaxies: kinematics and dynamics; galaxies: structure

Funding

  1. Spanish Ministry of Economy and Competitiveness (MINECO) under the Ramon y Cajal Programme [RYC-2012-11537]
  2. STFC consolidated grant [ST/M000990/1]
  3. MERAC foundation
  4. STFC [ST/M000990/1] Funding Source: UKRI

Ask authors/readers for more resources

Dwarf irregular galaxies (dIrrs) are the smallest stellar systems with extended HI discs. The study of the kinematics of such discs is a powerful tool to estimate the total matter distribution at these very small scales. In this work, we study the HI kinematics of 17 galaxies extracted from the 'Local Irregulars That Trace Luminosity Extremes, The HI Nearby Galaxy Survey' (LITTLE THINGS). Our approach differs significantly from previous studies in that we directly fit 3D models (two spatial dimensions plus one spectral dimension) using the software (3D)(BAROLO), fully exploiting the information in the HI data cubes. For each galaxy, we derive the geometric parameters of the HI disc (inclination and position angle), the radial distribution of the surface density, the velocity-dispersion (sigma(v)) profile and the rotation curve. The circular velocity (V-c), which traces directly the galactic potential, is then obtained by correcting the rotation curve for the asymmetric drift. As an initial application, we show that these dIrrs lie on a baryonic Tully-Fisher relation in excellent agreement with that seen on larger scales. The final products of this work are high-quality, ready-to-use kinematic data (V-c and sigma(v)) that we make publicly available. These can be used to perform dynamical studies and improve our understanding of these low-mass galaxies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available