4.6 Article

Deep Learning-Based Subsurface Damage Localization Using Full-Field Surface Strains

Journal

SENSORS
Volume 23, Issue 17, Pages -

Publisher

MDPI
DOI: 10.3390/s23177445

Keywords

subsurface damage; convolutional neural network; Strain Sensing Smart Skin; full-field strain; damage localization; non-destructive testing

Ask authors/readers for more resources

In this study, a Convolutional Neural Network (CNN) is developed to detect subsurface damage (SSD) using surface strain measurements. The trained network is capable of accurately detecting damage in different materials and can be used for subsurface crack detection and localization in real-life scenarios.
Structures in their service life are often damaged as a result of aging or extreme events such as earthquakes or storms. It is essential to detect damage in a timely fashion to ensure the safe operation of the structure. If left unchecked, subsurface damage (SSD) can cause significant internal damage and may result in premature structural failure. In this study, a Convolutional Neural Network (CNN) has been developed for SSD detection using surface strain measurements. The adopted network architecture is capable of pixel-level image segmentation, that is, it classifies each location of strain measurement as damaged or undamaged. The CNN which is fed full-field strain measurements as an input image of size 256 x 256 projects the SSD onto an output image of the same size. The data for network training is generated by numerical simulation of aluminum bars with different damage scenarios, including single damage and double damage cases at a random location, direction, length, and thickness. The trained network achieves an Intersection over Union (IoU) score of 0.790 for the validation set and 0.794 for the testing set. To check the applicability of the trained network on materials other than aluminum, testing is performed on a numerically generated steel dataset. The IoU score is 0.793, the same as the aluminum dataset, affirming the network's capability to apply to materials exhibiting a similar stress-strain relationship. To check the generalization potential of the network, it is tested on triple damage cases; the IoU score is found to be 0.764, suggesting that the network works well for unseen damage patterns as well. The network was also found to provide accurate predictions for real experimental data obtained from Strain Sensing Smart Skin (S4). This proves the efficacy of the network to work in real-life scenarios utilizing the full potential of the novel full-field strain sensing methods such as S4. The performance of the proposed network affirms that it can be used as a non-destructive testing method for subsurface crack detection and localization.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available