4.6 Article

Unmanned Aerial Vehicle-Based Compressed Data Acquisition for Environmental Monitoring in WSNs

Journal

SENSORS
Volume 23, Issue 20, Pages -

Publisher

MDPI
DOI: 10.3390/s23208546

Keywords

environmental monitoring; wireless sensor networks; unmanned aerial vehicle; data compression

Ask authors/readers for more resources

This paper addresses the challenge of handling large data volumes and minimizing energy consumption in wireless sensor networks through the use of data compression technology and a UAV-assisted compressed data acquisition algorithm. The algorithm reduces energy consumption and experimental results show promising performance.
With the increasing concerns for the environment, the amount of the data monitored by wireless sensor networks (WSNs) is becoming larger and the energy required for data transmission is greater. However, sensor nodes have limited storage capacity and battery power. The WSNs are faced with the challenge of handling larger data volumes while minimizing energy consumption for transmission. To address this issue, this paper employs data compression technology to eliminate redundant information in the environmental data, thereby reducing energy consumption of sensor nodes. Additionally, an unmanned aerial vehicle (UAV)-assisted compressed data acquisition algorithm is put forward. In this algorithm, compressive sensing (CS) is introduced to decrease the amount of data in the network and the UAV serves as a mobile aerial base station for efficient data gathering. Based on CS theory, the UAV selectively collects measurements from a subset of sensor nodes along a route planned using the optimized greedy algorithm with variation and insertion strategies. Once the UAV returns, the sink node reconstructs sensory data from these measurements using the reconstruction algorithms. Extensive experiments are conducted to verify the performance of this algorithm. Experimental results show that the proposed algorithm has lower energy consumption compared to other approaches. Furthermore, we employ different data reconstruction algorithms to recover data and discover that the data can be better reconstructed in a shorter time.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available