4.6 Article

Using Sparfloxacin-Capped Gold Nanoparticles to Modify a Screen-Printed Carbon Electrode Sensor for Ethanol Determination

Journal

SENSORS
Volume 23, Issue 19, Pages -

Publisher

MDPI
DOI: 10.3390/s23198201

Keywords

gold nanoparticles; sparfloxacin; chemical synthesis; screen-printed electrode; ethanol sensor

Ask authors/readers for more resources

This study developed an electrochemical sensor for the determination of ethanol in human salivary samples. The sensor, modified with sparfloxacin-stabilized gold nanoparticles, showed enhanced electrocatalytic activity and sensitivity for ethanol oxidation. The sensor demonstrated high stability and sensitivity, and successfully determined ethanol in saliva samples with a recovery rate of 99.6%.
Alcohol is a dangerous substance causing global mortality and health issues, including mental health problems. Regular alcohol consumption can lead to depression, anxiety, cognitive decline, and increased risk of alcohol-related disorders. Thus, monitoring ethanol levels in biological samples could contribute to maintaining good health. Herein, we developed an electrochemical sensor for the determination of ethanol in human salivary samples. Initially, the tetra-chloroauric acid (HAuCl4) was chemically reduced using sparfloxacin (Sp) which also served as a stabilizing agent for the gold nanoparticles (AuNPs). As-prepared Sp-AuNPs were comprehensively characterized and confirmed by UV-visible spectroscopy, X-ray diffraction, field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), and elemental mapping analysis. The average particle size (similar to 25 nm) and surface charge (negative) of Sp-AuNPs were determined by using dynamic light scattering (DLS) and Zeta potential measurements. An activated screen-printed carbon electrode (A-SPE) was modified using Sp-AuNPs dispersion, which exhibited greater electrocatalytic activity and sensitivity for ethanol (EtOH) oxidation in 0.1 M sodium hydroxide (NaOH) as studied by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). DPV showed a linear response for EtOH from 25 mu M to 350 mu M with the lowest limit of detection (LOD) of 0.55 mu M. Reproducibility and repeatability studies revealed that the Sp-AuNPs/A-SPEs were highly stable and very sensitive to EtOH detection. Additionally, the successful electrochemical determination of EtOH in a saliva sample was carried out. The recovery rate of EtOH spiked in the saliva sample was found to be 99.6%. Thus, the incorporation of Sp-AuNPs within sensors could provide new possibilities in the development of ethanol sensors with an improved level of precision and accuracy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available