4.6 Article

Flow Ripple Reduction in Reciprocating Pumps by Multi-Phase Rectification

Journal

SENSORS
Volume 23, Issue 15, Pages -

Publisher

MDPI
DOI: 10.3390/s23156967

Keywords

micropump; reciprocating pump; flow ripple; fluidic rectification; multi-phase rectifier

Ask authors/readers for more resources

In this study, parallel connection of piezoelectric micropumps and multi-phase rectification were used to minimize ripples at low flow rates. The fluidic ripple factor was reduced by more than 90% compared to one-phase rectification.
Reciprocating piezoelectric micropumps enable miniaturization in microfluidics for labon-a-chip applications such as organs-on-chips (OoC). However, achieving a steady flow when using these micropumps is a significant challenge because of flow ripples in the displaced liquid, especially at low frequencies or low flow rates (<50 mu L/min). Although dampers are widely used for reducing ripples in a flow, their efficiency depends on the driving frequency of the pump. Here, we investigated multi-phase rectification as an approach to minimize ripples at low flow rates by connecting piezoelectric micropumps in parallel. The efficiency in ripple reduction was evaluated with an increasing number (n) of pumps connected in parallel, each actuated by an alternating voltage waveform with a phase difference of 2 pi/n (called multi-phase rectification) at a chosen frequency. We introduce a fluidic ripple factor (RFfl.), which is the ratio of the root mean square (RMS) value of the fluctuations present in the rectified output to the average fluctuation-free value of the discharge flow, as a metric to express the quality of the flow. The fluidic ripple factor was reduced by more than 90% by using three-phase rectification when compared to one-phase rectification in the 2-60 mu L/min flow rate range. Analytical equations to estimate the fluidic ripple factor for a chosen number of pumps connected in parallel are presented, and we experimentally confirmed up to four pumps. The analysis shown can be used to design a frequency-independent multi-phase fluid rectifier to the desired ripple level in a flow for reciprocating pumps.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available