4.6 Article

Potential of a Miniature Spectral Analyzer for District-Scale Monitoring of Multiple Gaseous Air Pollutants

Journal

SENSORS
Volume 23, Issue 14, Pages -

Publisher

MDPI
DOI: 10.3390/s23146343

Keywords

air pollution; multi-parameter gas sensing; mid-infrared spectroscopy; open FTIR; MEMS

Ask authors/readers for more resources

A low-cost multi-parameter gas analyzer capable of monitoring multiple gaseous pollutants simultaneously was introduced. It is a small spectral sensor based on a Fourier-transform infrared (FTIR) gas analyzer. The sensor was successfully deployed in a district-scale climatic chamber and accurately measured carbon dioxide (CO2) and water vapor (H2O).
Gas sensors that can measure multiple pollutants simultaneously are highly desirable for on-site air pollution monitoring at various scales, both indoor and outdoor. Herein, we introduce a low-cost multi-parameter gas analyzer capable of monitoring multiple gaseous pollutants simultaneously, thus allowing for true analytical measurement. It is a spectral sensor consisting of a Fourier-transform infrared (FTIR) gas analyzer based on a mid-infrared (MIR) spectrometer. The sensor is as small as 7 x 5 x 2.5 cm(3). It was deployed in an open-path configuration within a district-scale climatic chamber (Sense City, Marne-la-Vallee, France) with a volume of 20 x 20 x 8 m(3). The setup included a transmitter and a receiver separated by 38 m to enable representative measurements of the entire district domain. We used a car inside the climatic chamber, turning the engine on and off to create time sequences of a pollution source. The results showed that carbon dioxide (CO2) and water vapor (H2O) were accurately monitored using the spectral sensor, with agreement with the reference analyzers used to record the pollution levels near the car exhaust. Furthermore, the lower detection limits of CO, NO2 and NO were assessed, demonstrating the capability of the sensor to detect these pollutants. Additionally, a preliminary evaluation of the potential of the spectral sensor to screen multiple volatile organic compounds (VOCs) was conducted at the laboratory scale. Overall, the results demonstrated the potential of the proposed multi-parameter spectral gas sensor in on-site gaseous pollution monitoring.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available