4.6 Article

BRT: An Efficient and Scalable Blockchain-Based Revocation Transparency System for TLS Connections

Journal

SENSORS
Volume 23, Issue 21, Pages -

Publisher

MDPI
DOI: 10.3390/s23218816

Keywords

PKI and TLS security; revocation; blockchain

Ask authors/readers for more resources

Log-based PKIs enhance transparency and accountability through publicly verifiable logs, but are vulnerable to split-world attacks and lack incentives. Blockchain-based PKIs enable decentralized log audits through financial incentives, but struggle with developing a scalable revocation mechanism for lightweight clients.
Log-based public key infrastructure(PKI) refers to a robust class of CA-attack-resilient PKI that enhance transparency and accountability in the certificate revocation and issuance process by compelling certificate authorities (CAs) to submit revocations to publicly and verifiably accessible logs. However, log-based PKIs suffer from a reliance on centralized and consistent sources of information, rendering them susceptible to split-world attacks, and they regrettably fail to provide adequate incentives for recording or monitoring CA behavior. Blockchain-based PKIs address these limitations by enabling decentralized log audits through automated financial incentives. However, they continue to face challenges in developing a scalable revocation mechanism suited for lightweight clients. In this paper, we introduce BRT, a scalable blockchain-based system for certificate and revocation transparency. It serves to log, audit, and validate the status of certificates within the transport layer security (TLS)/secure sockets layer(SSL) PKI domain. We designed an audit-on-chain framework, coupled with an off-chain storage/computation system, to enhance the efficiency of BRT when operating in a blockchain environment. By implementing a blockchain-based prototype, we demonstrate that BRT achieves storage-efficient log recording with a peak compression rate reaching 8%, cost-effective log updates for large-scale certificates, and near-instantaneous revocation checks for users.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available