4.6 Article

Comparison of Microwave Hyperthermia Applicator Designs with Fora Dipole and Connected Array

Journal

SENSORS
Volume 23, Issue 14, Pages -

Publisher

MDPI
DOI: 10.3390/s23146592

Keywords

microwave hyperthermia; cancer therapeutics; fractal octagonal ring array; dipole antenna; connected array; particle swarm optimization

Ask authors/readers for more resources

This study investigates the potential of using fractal octagonal ring antenna elements for breast tumor hyperthermia therapy at 2.45 GHz. Simulation and optimization of antenna excitation parameters are performed to obtain the specific absorption rate distributions for different antenna array designs. The results show that the dipole fractal octagonal ring antenna array has superior performance and feasibility in microwave hyperthermia for breast tumors.
In microwave hyperthermia tumor therapy, electromagnetic waves focus energy on the tumor to elevate the temperature above its normal levels with minimal injury to the surrounding healthy tissue. Microwave hyperthermia applicator design is important for the effectiveness of the therapy and the feasibility of real-time application. In this study, the potential of using fractal octagonal ring antenna elements as a dipole antenna array and as a connected array at 2.45 GHz for breast tumor hyperthermia application was investigated. Microwave hyperthermia treatment models consisting of different fractal octagonal ring antenna array designs and a breast phantom are simulated in COMSOL Multiphysics to obtain the field distributions. The antenna excitation phases and magnitudes are optimized using the global particle swarm algorithm to selectively increase the specific absorption rate at the target region while minimizing hot spots in other regions within the breast. Specific absorption rate distributions, obtained inside the phantom, are analyzed for each proposed microwave hyperthermia applicator design. The dipole fractal octagonal ring antenna arrays are comparatively assessed for three different designs: circular, linear, and Cross-array. The 16-antenna dipole array performance was superior for all three 1-layer applicator designs, and no distinct difference was found between 16-antenna circular, linear, or cross arrays. Two-layer dipole arrays have better performance in the deep-tissue targets than one-layer arrays. The performance of the connected array with a higher number of layers exceeds the performance of the dipole arrays in the superficial regions, while they are comparable for deep regions of the breast. The 1-layer 12-antenna circular FORA dipole array feasibility as a microwave hyperthermia applicator was experimentally shown.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available