4.7 Article

Spatio-temporal variations in organic carbon composition driven by two different major phytoplankton communities in the Ross Sea, Antarctica

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 891, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.scitotenv.2023.164666

Keywords

Particulate organic carbon; Dissolved organic carbon; Transparent exopolymer particle; Phytoplankton; Ross Sea; Antarctica

Ask authors/readers for more resources

In this study, we investigated the seasonal variations in organic carbon composition and the relative abundance of each organic carbon in different algal groups in the Ross Sea. The results showed that the compositions of organic carbon were influenced by seasonal variations, physical characteristics, and phytoplankton community structure. Additionally, the environmental changes and phytoplankton community structures in the Ross Sea due to climate change could affect the organic carbon pool, which could determine the efficiency of the biological pump.
The compositions of organic carbon could be important in determining biological carbon pump efficiency. However, little information on them in relation to each algal assemblage is currently available in the Ross Sea. Here, we inves-tigated the seasonal variations in organic carbon composition and the relative abundance of each organic carbon, in-cluding particulate organic carbon (POC), dissolved organic carbon (DOC), and transparent exopolymer particles (TEPs), characterized by different algal groups in the Ross Sea. The average POC and DOC contributions to the total organic carbon (TOC = POC + DOC) were 13.8 & PLUSMN; 3.7 % and 86.2 & PLUSMN; 3.7 % in mid-January 2019 and 20.9 & PLUSMN; 4.1 % and 79.1 & PLUSMN; 4.1 % in February-March 2018, respectively. The carbon content of TEP (TEP-C) contributed 19.6 & PLUSMN; 11.7 % and 4.6 & PLUSMN; 7.0 % of POC and TOC in mid-January and 36.2 & PLUSMN; 14.8 % and 9.0 & PLUSMN; 6.7 % in February-March, respectively. We found that the organic carbon compositions were affected by seasonal variations in the phytoplankton bloom phase, physical characteristics, and phytoplankton community structure. DOC concentra-tions and contributions to the TOC increased as phytoplankton cells became senescent in mid-January and decreased in February-March when phytoplankton were relatively active. From February-March, the deepened mixed layer depth encouraged TEP formation, subsequently increasing the TEP contributions. Regardless of the sampling season, all organic carbon concentrations per unit Chl-a were significantly higher in P. antarctica-abundant groups. The DOC contributions to the TOC were correspondingly higher at the P. antarctica-abundant stations in mid-January, which indicates that P. antarctica could be also important in the DOC contributions in the Ross Sea. The rapid alteration in environmental characteristics and phytoplankton community structures in the Ross Sea due to climate change could affect the organic carbon pool at the euphotic layer which consequently could determine the efficiency of the biological pump.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available