4.7 Article

Seasonal dynamics of the microbiome-host response to pharmaceuticals and pesticides in Mytilus galloprovincialis farmed in the Northwestern Adriatic Sea

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 887, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.scitotenv.2023.163948

Keywords

Mediterranean mussel; Emerging pollutants; Microbiome-host interaction; Biomonitoring

Ask authors/readers for more resources

Through the study of the potential symbiotic relationship between marine mussels and microbiomes, we found that they play a crucial role in the detoxification of multiple xenobiotics, protection of the host and adaptation to the environment. This symbiotic relationship is particularly significant in the Northwestern Adriatic Sea, where there are high levels of anthropogenic pollutants.
Marine mussels, especially Mytilus galloprovincialis, are well-established sentinel species, being naturally resistant to the exposure to multiple xenobiotics of natural and anthropogenic origin. Even if the response to multiple xenobiotic ex-posure is well known at the host level, the role of the mussel-associated microbiome in the animal response to environ-mental pollution is poorly explored, despite its potential in xenobiotic detoxification and its important role in host development, protection, and adaptation. Here, we characterized the microbiome-host integrative response of M. galloprovincialis in a real-world setting, involving exposure to a complex pattern of emerging pollutants, as occurs in the Northwestern Adriatic Sea. A total of 387 mussel individuals from 3 commercial farms, spanning about 200 km along the Northwestern Adriatic coast, and in 3 different seasons, were collected. Multiresidue analysis (for quantitative xenobiotic determination), transcriptomics (for host physiological response), and metagenomics (for host-associated microbial taxonomical and functional features) analyses were performed on the digestive glands. Ac-cording to our findings, M. galloprovincialis responds to the presence of the complex pattern of multiple emerging pol-lutants - including the antibiotics sulfamethoxazole, erythromycin, and tetracycline, the herbicides atrazine and metolachlor, and the insecticide N,N-diethyl-m-toluamide - integrating host defense mechanisms, e.g., through upreg-ulation of transcripts involved in animal metabolic activity, and microbiome-mediated detoxification functions, in-cluding microbial functionalities involved in multidrug or tetracycline resistance. Overall, our data highlight the importance of the mussel-associated microbiome as a strategic player for the orchestration of resistance to the multixenobiotic exposure at the holobiont level, providing strategic functionalities for the detoxification of multiple xenobiotic substances, as occurring in real world exposure settings. Complementing the host with microbiome-dependent xenobiotic degradative and resistance genes, the M. galloprovincialis digestive gland associated microbiome can have an important role in the detoxification of emerging pollutants in a context of high anthropogenic pressure, supporting the relevance of mussel systems as potential animal-based bioremediation tool.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available