4.7 Article

Removal of parabens from wastewater by Chlorella vulgaris-bacteria co-cultures

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 884, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.scitotenv.2023.163746

Keywords

Methylparaben removal; Microalga-bacteria consortia; Microbial interactions; Nutrients removal; Wastewater polishing

Ask authors/readers for more resources

Anthropogenic activities have increased the presence of emerging contaminants, particularly parabens, in wastewater. Current wastewater treatment technologies are not efficient in removing these contaminants. However, using microalgae-based systems and microalgae-bacteria consortia can improve the efficiency of wastewater treatment.
Anthropogenic activities have increased the dispersal of emerging contaminants (ECs), particularly of parabens, causing an escalation of their presence in wastewater (WW). Current WW technologies do not present satisfactory efficiency or sustainability in removing these contaminants. However, bioremediation with microalgae-based systems is proving to be a relevant technology for WW polishing, and the use of microalgae-bacteria consortia can improve the efficiency of WW treatment. This work aimed to study dual cultures of selected bacteria (Raoultella ornithinolytica, Acidovorax facilis, Acinetobacter calcoaceticus, Leucobacter sp. or Rhodococcus fascians) and the microalga Chlorella vulgaris in microbial growth and WW bioremediation - removal of methylparaben (MetP) and nutrients. The association with the bacteria was antagonistic for C. vulgaris biomass productivity as a result of the decreased growth kinetics in comparison to the axenic microalga. The presence of MetP did not disturb the growth of C. vulgaris under axenic or co-cultured conditions, except when associated with R. fascians, where growth enhancement was observed. The removal of MetP by the microalga was modest (circa 30 %, with a removal rate of 0.0343 mg/L.d), but increased remarkably when the consortia were used (> 50 %, with an average removal rate > 0.0779 mg/L.d), through biodegradation and photodegradation. For nutrient removal, the consortia were found to be less effective than the axenic microalga, except for nitrogen (N) removal by C. vulgaris w/ R. fascians. The overall results propose that C. vulgaris co-cultivation with bacteria can increase MetP removal, while negatively affecting the microalga growth and the consequent reduction of sludge production, highlighting the potential of microalgae-bacteria consortia for the effective polishing of WW contaminated with parabens.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available