4.7 Article

Prediction of fishing intensity and trends across South China Sea biogeographic zones

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 899, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.scitotenv.2023.165691

Keywords

Automatic identification system (AIS); Fishing effort; GAM prediction; South China Sea; Spatio-temporal analysis; VIIRS DNB

Ask authors/readers for more resources

The South China Sea is identified as one of the top global sustainable fisheries concerns. By characterizing the biogeographic zones and predicting fishing activities, the study provides a more accurate and comprehensive database for regulating and managing fishing activities worldwide.
The volume of industrial fishing in the South China Sea ranks among the top global sustainable fisheries concerns of the Food and Agriculture Organization (FAO). To better understand the scale of management challenges, biogeographic zones of the SCS were characterized, and within each a multivariate GAM (General Additive Model) was fitted to predict and map the complete fishing activities from 2017 to 2020. Model variables, some incomplete or with gaps, included: VIIRS DNB night-time light imagery; Global Fisheries Watch (GFW) data; satellite Ocean Colour; Sea Surface Temperature; and bathymetry data. Four biogeographic zones with differing fishing patterns and trends were identified. We used cross-validation and the GAM model's own tuning method for model prediction accuracy determination, which performed well in four biogeographic zones (R2 respectively: 0.62, 0.68, 0.74 and 0.71). High-intensity fishing grounds are mainly distributed in offshore continental shelf areas. From 2017 to 2019, high-intensity fishing grounds were located near the Beibu Gulf of Vietnam, south Vietnam, part of the Gulf of Thailand and the central Java Sea, where fishing effort greater than 50 h exceeded average annual SCS fishing intensity for several years. By season, intensity and extent of fishing in Spring were largest. In 2020, due to the impact of COVID-19, except for Spring, fishing volume generally decreased. Our experimental results provide new insights and an adaptable biogeographic modelling methodology to map the scale and intensity of regional fishing activities more accurately and completely. This more comprehensive database, that takes account of intrinsic biogeographic fishery context, will help improve and strengthen the regulation of fishing activities around the world.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available