4.7 Article

Magnetorotationally driven wind cycles in local disc models

Journal

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Volume 463, Issue 3, Pages 3096-3112

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/mnras/stw2196

Keywords

accretion; accretion discs; instabilities; MHD

Ask authors/readers for more resources

Jets, from the protostellar to the AGN context, have been extensively studied but their connection to the turbulent dynamics of the underlying accretion disc is poorly understood. Following a similar approach to Lesur, Fereira & Ogilvie, we examine the role of the magnetorotational instability (MRI) in the production and acceleration of outflows from discs. Via a suite of 1D shearing-box simulations of stratified discs, we show that magnetocentrifugal winds exhibit cyclic activity with a period of 10-20 Omega(-1), a few times the orbital period. The cycle seems to be more vigorous for strong vertical field; it is robust to the variation of relevant parameters and independent of numerical details. The convergence of these solutions (in particular the mass-loss rate) with vertical box size is also studied. By considering a sequence of magnetohydrostatic equilibria and their stability, the periodic activity may be understood as the succession of the following phases: (a) a dominant MRI channel mode, (b) strong magnetic field generation, (c) consequent wind launching, and ultimately (d) vertical expulsion of the excess magnetic field by the expanding and accelerating gas associated with the wind. We discuss potential connections between this behaviour and observed time-variability in disc-jet systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available