4.7 Article

Insights into the release of triclosan from microplastics in aquatic environment assessed with diffusive gradient in thin-films

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 882, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.scitotenv.2023.163601

Keywords

Microplastics; Organic pollutants; Diffusive gradients in thin -films; Sorption; Waters

Ask authors/readers for more resources

In this study, the adsorption and desorption kinetics of triclosan on polystyrene (PS) and polyvinyl chloride (PVC) were investigated using batch experiments and the diffusive gradients in thin-films (DGT) technique. The results showed that both intraparticle diffusion and external liquid film diffusion affected the adsorption and desorption processes. The DGT results indicated some restrictions to the desorption of triclosan from microplastic suspensions. Additionally, pH and ionic strength had significant effects on the supply of triclosan to DGT, either independently or interactively.
Organic chemicals associated with microplastics (MPs) can be released and thus pose potential risks during weathering processes. However, the thermodynamics and kinetics of their release processes still need to be better understood. Herein, the adsorption and desorption kinetics of triclosan on polystyrene (PS) and polyvinyl chloride (PVC) were investigated by using both batch experiments and diffusive gradients in thin-films (DGT) technique. The pseudo-secondorder model fitted the data best, implying that both intraparticle diffusion and external liquid film diffusion influence the adsorption and desorption processes. DGT continuously accumulated triclosan from MP suspensions but slower than theoretical values, indicating some restrictions to desorption. The DGT-induced fluxes in Soils/Sediment (DIFS) model, employed to interpret DGT data, gave distribution coefficients for labile species (Kdl) of 5000 mL g-1 (PS) and 1000 mL g-1 (PVC) and the corresponding response times (Tc) were 10 s and 1000 s, respectively. Higher Kdl but smaller Tc for PS than PVC showed that more triclosan adsorbed on PS could be rapidly released, while there were some kinetic limitations for triclosan on PVC. A novel finding was that pH and ionic strength individually and interactively affected the supply of triclosan to DGT. This is the first study to quantify interactions of organics with MPs by using DGT, aiding our understanding of MPs' adsorption/desorption behavior in the aquatic environment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available