4.7 Article

Potential impacts of seasonal and altitudinal changes on enzymatic peat decomposition in the High Andean Paramo region of Ecuador

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 890, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.scitotenv.2023.164365

Keywords

Extracellular enzyme activity; Soil; Enzyme latch; Climate change

Ask authors/readers for more resources

The Andean Paramo, with its distinct vegetational zones, has a vast water storage and carbon fixation capacity. This study examines the activity of several enzymes at different altitudes and sampling depths, and finds a tendency towards decreasing enzyme activities at higher altitudes and in the dry season. The outcome suggests that slight environmental changes might lead to increased organic matter decomposition and endanger the paramo region and its ecosystem services.
The Andean Paramo is a vast ecosystem, characterized by distinct vegetational zones at several altitudinal levels with huge water storage and carbon fixation capacity within its peat-like andosols, due to a slow decomposition rate of organic matter. These characteristics become mutually related as enzymatic activities increase with temperature and are associated with oxygen penetration, restricting the activity of many hydrolytic enzymes according to the enzyme Latch Theory. This study describes the changing activity of sulfatase (Sulf), phosphatase (Phos), n-acetyl-glucosaminidase (N-Ac), cellobiohydrolase (Cellobio), f3-glucosidase (f3-Glu), and peroxidase (POX) on an altitudinal scale from 3600 to 4200 m, in rainy and dry seasons at 10 and 30 cm sampling depth, related to physical and chemical soil characteristics, like metals and organic elements. Linear fixed-effect models were established to analyze these environmental factors to determine distinct decomposition patterns. The data suggests a strong tendency towards decreasing enzyme activities at higher altitudes and in the dry season up to two-fold stronger activation for Sulf, Phos, Cellobio, and f3-Glu. Especially the lowest altitude showed considerably stronger activity of N-Ac, f3-Glu, and POX. Although sampling depth revealed significant differences for all hydrolases but Cellobio, it had minor effects on model outcomes. Further organic rather than physical or metal components of the soil explain the enzyme activity variations. Although the levels of phenols coincided mostly with the soil organic carbon content, there was no direct relation between hydro lases, POX activity, and phenolic substances. The outcome suggests that slight environmental changes with global warming might cause important changes in enzyme activities leading to increased organic matter decomposition at the borderline between the paramo region and downslope ecosystems. Expected extremer dry seasons could cause critical changes as aeration increases peat decomposition leading to a constant liberation of carbon stocks, which puts the paramo region and its ecosystem services in great danger.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available