4.7 Article

Distance and extinction determination for APOGEE stars with Bayesian method

Journal

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Volume 460, Issue 3, Pages 3179-3192

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/mnras/stw1183

Keywords

stars: distances; stars: fundamental parameters; dust; extinction

Funding

  1. National Key Basic Research Program of China [2014CB845700]
  2. National Natural Science Foundation of China [11321064, 11390371, 11473033, 11428308, U1331122]
  3. National Aeronautics and Space Administration
  4. National Science Foundation
  5. University of California, Los Angeles
  6. Jet Propulsion Laboratory/California Institute of Technology
  7. Alfred P. Sloan Foundation
  8. US Department of Energy Office of Science
  9. University of Arizona
  10. Brazilian Participation Group
  11. Brookhaven National Laboratory
  12. Carnegie Mellon University
  13. University of Florida
  14. French Participation Group
  15. German Participation Group
  16. Harvard University
  17. Instituto de Astrofisica de Canarias
  18. Michigan State/Notre Dame/JINA Participation Group
  19. Johns Hopkins University
  20. Lawrence Berkeley National Laboratory
  21. Max Planck Institute for Astrophysics
  22. Max Planck Institute for Extraterrestrial Physics
  23. New Mexico State University
  24. New York University
  25. Ohio State University
  26. Pennsylvania State University
  27. University of Portsmouth
  28. Princeton University
  29. Spanish Participation Group
  30. University of Tokyo
  31. University of Utah
  32. Vanderbilt University
  33. University of Virginia
  34. University of Washington
  35. Yale University

Ask authors/readers for more resources

Using a Bayesian technology, we derived distances and extinctions for over 100 000 red giant stars observed by the Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey by taking into account spectroscopic constraints from the APOGEE stellar parameters and photometric constraints from Two Micron All-Sky Survey, as well as a prior knowledge on the Milky Way. Derived distances are compared with those from four other independent methods, the Hipparcos parallaxes, star clusters, APOGEE red clump stars, and asteroseismic distances from APOKASC and Stromgren survey for Asteroseismology and Galactic Archaeology catalogues. These comparisons covers four orders of magnitude in the distance scale from 0.02 to 20 kpc. The results show that our distances agree very well with those from other methods: the mean relative difference between our Bayesian distances and those derived from other methods ranges from -4.2 per cent to +3.6 per cent, and the dispersion ranges from 15 per cent to 25 per cent. The extinctions towards all stars are also derived and compared with those from several other independent methods: the Rayleigh-Jeans Colour Excess (RJCE) method, Gonzalez's 2D extinction map, as well as 3D extinction maps and models. The comparisons reveal that, overall, estimated extinctions agree very well, but RJCE tends to overestimate extinctions for cool stars and objects with low log g.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available