4.6 Article

The variable domain from dynamin-related protein 1 promotes liquid-liquid phase separation that enhances its interaction with cardiolipin-containing membranes

Journal

PROTEIN SCIENCE
Volume 32, Issue 11, Pages -

Publisher

WILEY
DOI: 10.1002/pro.4787

Keywords

dynamin; fluorescence; intrinsically disordered protein; mitochondria; mitochondrial fission; NMR; phase separation; protein folding

Ask authors/readers for more resources

The variable domain (VD) of mitochondrial fission dynamin, dynamin-related protein 1, is shown to be intrinsically disordered and undergo a condensed liquid-like phase separation under crowding conditions. This condensed state involving the VD may enable rapid tuning of mechanoenzyme assembly necessary for fission.
Dynamins are an essential superfamily of mechanoenzymes that remodel membranes and often contain a variable domain important for regulation. For the mitochondrial fission dynamin, dynamin-related protein 1, a regulatory role for the variable domain (VD) is demonstrated by gain- and loss-of-function mutations, yet the basis for this is unclear. Here, the isolated VD is shown to be intrinsically disordered and undergo a cooperative transition in the stabilizing osmolyte trimethylamine N-oxide. However, the osmolyte-induced state is not folded and surprisingly appears as a condensed state. Other co-solutes including known molecular crowder Ficoll PM 70, also induce a condensed state. Fluorescence recovery after photobleaching experiments reveal this state to be liquid-like indicating the VD undergoes a liquid-liquid phase separation under crowding conditions. These crowding conditions also enhance binding to cardiolipin, a mitochondrial lipid, which appears to promote phase separation. Since dynamin-related protein 1 is found assembled into discrete punctate structures on the mitochondrial surface, the inference from the present work is that these structures might arise from a condensed state involving the VD that may enable rapid tuning of mechanoenzyme assembly necessary for fission.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available