4.6 Article

Dehydration alters behavioral thermoregulation and the geography of climatic vulnerability in two Amazonian lizards

Journal

PLOS ONE
Volume 18, Issue 11, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0286502

Keywords

-

Ask authors/readers for more resources

This study investigates the impact of hydration levels on the thermal adaptability of Amazonian forest lizards and compares the effects of dehydration and environmental factors on climatic vulnerability using two modeling approaches.
High temperatures and low water availability often strike organisms concomitantly. Observing how organisms behaviorally thermohydroregulate may help us to better understand their climatic vulnerability. This is especially important for tropical forest lizards, species that are purportedly under greater climatic risk. Here, we observed the influence of hydration level on the Voluntary Thermal Maximum (VTmax) in two small Amazonian lizard species: Loxopholis ferreirai (semiaquatic and scansorial) and Loxopholis percarinatum (leaf litter parthenogenetic dweller), accounting for several potential confounding factors (handling, body mass, starting temperature and heating rate). Next, we used two modeling approaches (simple mapping of thermal margins and NicheMapR) to compare the effects of dehydration, decrease in precipitation, ability to burrow, and tree cover availability, on geographic models of climatic vulnerability. We found that VTmax decreased with dehydration, starting temperature, and heating rates in both species. The two modeling approaches showed that dehydration may alter the expected intensity, extent, and duration of perceived thermal risk across the Amazon basin for these forest lizards. Based on our results and previous studies, we identify new evidence needed to better understand thermohydroregulation and to model the geography of climatic risk using the VTmax.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available