4.6 Article

The plant toxin 4-methylsulfinylbutyl isothiocyanate decreases herbivore performance and modulates cellular and humoral immunity

Journal

PLOS ONE
Volume 18, Issue 8, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0289205

Keywords

-

Ask authors/readers for more resources

Insect herbivores encountering plant defense molecules have unclear understanding of the consequences for their immune systems. Previous studies have explored the relationship between plant defensive chemistry and herbivore immune responses using natural variation, but this may confound with other plant trait differences. This study investigates the effects of a plant toxin on the immune responses of the generalist herbivore Trichoplusia ni. The results show that high concentrations of the plant toxin hindered caterpillar development, decreased cellular immunity, and had mixed effects on humoral immunity.
Insect herbivores frequently encounter plant defense molecules, but the physiological and ecological consequences for their immune systems are not fully understood. The majority of studies attempting to relate levels of plant defensive chemistry to herbivore immune responses have used natural population or species-level variation in plant defensive chemistry. Yet, this potentially confounds the effects of plant defense chemistry with other potential plant trait differences that may affect the expression of herbivore immunity. We used an artificial diet containing known quantities of a plant toxin (4-methylsulfinylbutyl isothiocyanate; 4MSOB-ITC or ITC, a breakdown product of the glucosinolate glucoraphanin upon herbivory) to explicitly explore the effects of a plant toxin on the cellular and humoral immune responses of the generalist herbivore Trichoplusia ni (Lepidoptera: Noctuidae) that frequently feeds on glucosinolate-containing plants. Caterpillars feeding on diets with high concentrations of ITC experienced reduced survivorship and growth rates. High concentrations of ITC suppressed the appearance of several types of hemocytes and melanization activity, which are critical defenses against parasitic Hymenoptera and microbial pathogens. In terms of T. ni humoral immunity, only the antimicrobial peptide (AMP) genes lebocin and gallerimycin were significantly upregulated in caterpillars fed on diets containing high levels of ITC relative to caterpillars that were provided with ITC-free diet. Surprisingly, challenging caterpillars with a non-pathogenic strain of Escherichia coli resulted in the upregulation of the AMP gene cecropin. Feeding on high concentrations of plant toxins hindered caterpillar development, decreased cellular immunity, but conferred mixed effects on humoral immunity. Our findings provide novel insights into the effects of herbivore diet composition on insect performance demonstrating the role of specific plant defense toxins that shape herbivore immunity and trophic interactions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available