4.7 Article

The first complete mitochondrial genome of Carex (C. breviculmis): a significantly expanded genome with highly structural variations

Journal

PLANTA
Volume 258, Issue 2, Pages -

Publisher

SPRINGER
DOI: 10.1007/s00425-023-04169-1

Keywords

Genome recombination; Mitochondrial genome; Organelle genome; RNA editing; Carex

Categories

Ask authors/readers for more resources

The mitochondrial genome of Carex breviculmis was sequenced and assembled, revealing its genomic features and possible structures. The major conformation of the mitochondrial genome is a circular molecule with 33 protein-coding genes, 15 tRNA genes, and three rRNA genes. The reduction in RNA editing sites could be attributed to point mutations and retroprocessing events.
Main conclusionThe first complete mitochondrial genome of Carex (C. breviculmis) was sequenced and assembled, and its genomic signature was analyzed and the possible conformations of its mitochondrial genome were validated.Carex breviculmis is a very adaptable grass that is highly resistant to environmental stresses such as drought and low light. It is also admired as a landscape plant with high development prospects and scientific research value. In this study, the mitochondrial genome of C. breviculmis was assembled using Pacbio and Illumina sequencing data. We detected 267 pairs of repeats and found that three pairs of repeats could mediate the recombination of its mitochondrial genome and formed four possible conformations, of which we verified the two conformations mediated by the shortest pair of repeats using PCR amplification and Sanger sequencing. The major conformation of the C. breviculmis mitochondrial genome is a 1,414,795 bp long circular molecule with 33 annotated protein-coding genes, 15 tRNA genes, and three rRNA genes. We detected a total of 25 homologous sequences between the chloroplast and mitochondrial genomes, corresponding to 0.40% of the mitochondrial genome. Combined with the low GC content (41.24%), we conclude that the reduction in RNA editing sites in the C. breviculmis mitochondrial genome may be due to an accumulation of point mutations in C-to-T or retroprocessing events within the genome. The relatively low number of RNA editing sites in its mitochondrial genome could serve as important material for subsequent studies on the selection pressure of RNA editing in angiosperms. A maximum likelihood analysis based on 23 conserved mitochondrial genes from 28 species reflects an accurate evolutionary and taxonomic position of C. breviculmis. This research provided us with a comprehensive understanding of the mitochondrial genome of Carex and also provided important information for its molecular breeding.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available