4.8 Article

Na+-preferential ion transporter HKT1;1 mediates salt tolerance in blueberry

Journal

PLANT PHYSIOLOGY
Volume -, Issue -, Pages -

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1093/plphys/kiad510

Keywords

-

Categories

Ask authors/readers for more resources

This study identified a candidate gene VcHKT1;1 involved in leaf Na+ exclusion and salt tolerance in blueberry. It was found that VcHKT1;1 promotes leaf Na+ exclusion by retrieving Na+ from xylem sap. The study also discovered a naturally occurring mutation in the promoter of VcHKT1;1 that increases its transcription level and promotes leaf Na+ exclusion and salt tolerance in blueberry.
Soil salinity is a major environmental factor constraining growth and productivity of highbush blueberry (Vaccinium corymbosum). Leaf Na+ content is associated with variation in salt tolerance among blueberry cultivars; however, the determinants and mechanisms conferring leaf Na+ exclusion are unknown. Here, we observed that the blueberry cultivar 'Duke' was more tolerant than 'Sweetheart' and accumulated less Na+ in leaves under salt stress conditions. Through transcript profiling, we identified a member of the high-affinity K(+)transporter (HKT) family in blueberry, VcHKT1;1, as a candidate gene involved in leaf Na+ exclusion and salt tolerance. VcHKT1;1 encodes a Na+-preferential transporter localized to the plasma membrane and is preferentially expressed in the root stele. Heterologous expression of VcHKT1;1 in Arabidopsis (Arabidopsis thaliana) rescued the salt hypersensitivity phenotype of the athkt1 mutant. Decreased VcHKT1;1 transcript levels in blueberry plants expressing antisense-VcHKT1;1 led to increased Na+ concentrations in xylem sap and higher leaf Na+ contents compared with wild-type plants, indicating that VcHKT1;1 promotes leaf Na+ exclusion by retrieving Na+ from xylem sap. A naturally occurring 8-bp insertion in the promoter increased the transcription level of VcHKT1;1, thus promoting leaf Na+ exclusion and blueberry salt tolerance. Collectively, we provide evidence that VcHKT1;1 promotes leaf Na+ exclusion and propose natural variation in VcHKT1;1 will be valuable for breeding Na+-tolerant blueberry cultivars in the future.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available