4.7 Article

Bifidobacterium longum 68S mediated gut-skin axis homeostasis improved skin barrier damage in aging mice

Journal

PHYTOMEDICINE
Volume 120, Issue -, Pages -

Publisher

ELSEVIER GMBH
DOI: 10.1016/j.phymed.2023.155051

Keywords

Skin aging; Skin barrier; Bifidobacterium longum 68S; Ceramide; SPT1; Intestinal microbiota

Ask authors/readers for more resources

This study investigated the potential mechanism of B. longum 68S in ameliorating skin barrier damage in aging mice. The results demonstrated that intestinal microbiota played a key role in this process, and supplementation of B. longum 68S improved skin barrier damage by regulating the production of SPT1-derived ceramide to prevent endoplasmic reticulum stress and apoptotic response.
Background: Bifidobacterium as probiotics, play important roles in skin status, while the potential mechanisms interaction remains unknown. The study further explored the potential mechanism of B. longum 68S in ameliorating skin barrier damage from the perspective of the gut-skin axis in aging mice. Methods: B. longum 68S supplied natural aging mouse model and fecal microbiota transplantation (FMT) experiment proves the key role of intestinal microbiota in B. longum 68S up-regulating the production of ceramide synthesis key enzyme (SPT1) and ceramide level and improving skin barrier damage. Moreover, B. longum 68S supplied SPT1 gene deletion mouse model to investigate the mechanism of B. longum 68S on improving skin barrier damage. Results: Transcriptome analysis and 16S rRNA high-throughput pyrosequencing demonstrated that aging mice exhibited skin barrier dysfunction and intestinal dysbiosis. Meanwhile, aging mice exhibited an up-regulation in the trans epidermal water loss (TEWL) and a down-regulation in the level of SPT1, ceramide and skin barrier-related proteins (Loricrin, Keratin 10 and Desmoglein 1). Similarity, the FMT from aging mice to normal mice and SPT1 gene deletion mice could rebuild skin barrier damage and B. longum 68S supplementation exerted a positive effect on it. Further, B. longum 68S-mediated SPT1-derived ceramide production prevented impaired ceramide synthesis-induced endoplasmic reticulum stress and apoptotic response, ultimately improving skin barrier damage in vitro. Conclusion: Emerging anti-aging therapies are necessary given the poor safety profiles of current pharmaceutical drugs. B. longum 68S may be better alternatives, considering the association between the gut microbiota and healthy aging. The findings suggested that B. longum 68S-mediated gut-skin axis homeostasis, thereby exhibiting an anti-aging effect and facilitate a better understanding of the mechanisms governing the various beneficial effects of B. longum 68S.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available