4.6 Article

Improved Production and Antitumor Properties of Triterpene Acids from Submerged Culture of Ganoderma lingzhi

Journal

MOLECULES
Volume 21, Issue 10, Pages -

Publisher

MDPI AG
DOI: 10.3390/molecules21101395

Keywords

antitumor activity; Ganoderma lingzhi; medicinal fungi; response surface methodology; submerged batch fermentation; triterpene acids

Funding

  1. Program for New Century Excellent Talents in University [NCET-13-1046]
  2. Hunan Provincial Natural Science Foundation of China [2015JJ1025]
  3. National Natural Science Foundation of China [31571900]

Ask authors/readers for more resources

Triterpene acids (TAs) are the major bioactive constituents in the medicinal fungus Ganoderma lingzhi. However, fermentative production of TAs has not been optimized for commercial use, and whether the TAs isolated from G. lingzhi submerged culture mycelia possess antitumor activity needs to be further proven. In this study, enhanced TA yield and productivity were attained with G. lingzhi using response surface methodology. The interactions of three variables were studied using a Box-Benhnken design, namely initial pH, dissolved oxygen (DO) and fermentation temperature. The optimum conditions were an initial pH of 5.9, 20.0% DO and 28.6 degrees C. These conditions resulted in a TA yield of 308.1 mg/L in a 5-L stirred bioreactor. Furthermore, the optimized conditions were then successfully scaled up to a production scale of 200 L, and maximum TA production and productivity of 295.3 mg/L and 49.2 mg/L/day were achieved, which represented 80.9% and 111.5% increases, respectively, compared with the non-optimized conditions. Additionally, the triterpene acid extract (TAE) from G. lingzhi mycelia was found to be cytotoxic to the SMMC-7721 and SW620 cell lines in vitro, and the TAE exhibited dose-dependent antitumor activity against the solid tumor sarcoma 180 in vivo. Chemical analysis revealed that the key active triterpene compounds, ganoderic acid T and ganoderic acid Me, predominated in the extract.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available