4.4 Article

Intermittency at Earth's bow shock: Measures of turbulence in quasi-parallel and quasi-perpendicular shocks

Journal

PHYSICS OF PLASMAS
Volume 30, Issue 8, Pages -

Publisher

AIP Publishing
DOI: 10.1063/5.0160439

Keywords

-

Ask authors/readers for more resources

The energy cascade in turbulent plasmas like the solar wind and magnetosheath occurs across different scales, and recent observations of Earth's bow shock provide insight into the turbulent dissipation and magnetic fluctuations in this region. Through analysis of magnetic spectra and correlation lengths, researchers found power-law scaling and changes in kurtosis in the shock transition region, with differences observed between quasi-perpendicular and quasi-parallel shocks. These findings contribute to a better understanding of plasma turbulence and its dynamics.
Turbulent plasmas such as the solar wind and magnetosheath exhibit an energy cascade that is present across a broad range of scales, from the stirring scale at which energy is injected, down to the smallest scales where energy is dissipated through processes such as reconnection and wave-particle interactions. Recent observations of Earth's bow shock reveal a disordered or turbulent transition region exhibiting features of turbulent dissipation, like reconnecting current sheets. We used observations from magnetospheric multiscale (MMS) over four separate bow shock crossings of varying shock normal angle to characterize turbulence in the shock transition region and how it evolves toward the magnetosheath. These cases studies have been chosen to ensure validity of Taylor's hypothesis, which we discuss in depth. We observe the magnetic spectrum evolving by fitting power laws over many short intervals, finding that the power-law index in the shock transition region is separable from the upstream and downstream plasma, for both quasi-perpendicular and quasi-parallel shocks. Across the shock, we see a change in the breakpoint location between inertial and ion power-law slopes. We also observe the evolution of scaleindependent kurtosis of magnetic fluctuations across the shock, finding a reduction of high kurtosis intervals downstream of the shock. Finally, we adapt a method for calculating correlation length to include a high-pass filter, allowing estimates for changes in correlation length across the shock. In a quasi-perpendicular shock, we find the correlation length to be significantly smaller in the magnetosheath than in solar wind; however, the opposite can occur for quasi-parallel shocks. (c) 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http:// creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0160439

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available