4.7 Article

Features and mechanisms of asymmetric wake evolution downstream of two parallel circular cylinders

Journal

PHYSICS OF FLUIDS
Volume 35, Issue 10, Pages -

Publisher

AIP Publishing
DOI: 10.1063/5.0168351

Keywords

-

Ask authors/readers for more resources

In this study, the wakes behind side-by-side circular cylinders were investigated using direct numerical simulation. Several asymmetric wake patterns were discovered and analyzed, providing a deeper understanding of asymmetric flows.
Uniform flow past side-by-side circular cylinders is a classical fluid dynamic model that triggers rich phenomena, from which asymmetric wakes usually emerge. Such asymmetry arising from a completely symmetric geometric setting is of theoretical interest when exploring the system bifurcations. Using direct numerical simulation, a detailed parametric map of the wakes behind two side-by-side circular cylinders is presented with several asymmetric wake patterns. These include asymmetric anti-phase (AAP), typical and special deflected (DF), and in-phase (IP) flows, for which AAP and special DF flows are discovered for the first time. Additionally, the IP flow is simulated by both two- and three-dimensional grids to explore the effect brought by three-dimensional vortical structures. The evolution of these asymmetric wakes is analyzed in different phases, with the aid of the wavelet transform, Hilbert-Huang transform, and dynamic mode decomposition, to reveal their temporal variations of developing features. Interestingly, although revealing with distinct fully developed flow fields, there are several common dynamics identified among these wake patterns: AP and IP vortex shedding, wake transition, and gap flow oscillation. The vicissitudes of dynamic flow evolution allow us to further differentiate several wake patterns and ultimately contribute to a deeper understanding of asymmetric flows.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available