4.5 Article

Non-condensate fraction of a weakly interacting Bose gas confined between two parallel plates within improved Hartree-Fock approximation at zero temperature

Journal

PHYSICS LETTERS A
Volume 486, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.physleta.2023.129099

Keywords

Bose-Einstein condensate; Non-condensate fraction; Universal properties; Finite-size effect

Ask authors/readers for more resources

By analytically solving the nonlinear gap and Schwinger-Dyson equations, the non-condensate fraction of a weakly interacting Bose-Einstein condensate (BEC) confined between two parallel plates at zero temperature is investigated within the improved Hartree-Fock approximation. It is proved that the finite-size effect increases the non-condensate fraction compared with the one of the same homogeneous BEC. Our result also shows that the non-condensate fraction can be expressed as a sum of two terms: the first term corresponds to the non-condensate fraction of the homogeneous dilute BEC and the other appears because of the confinement. Both terms are universal. A comparison with the experimental data is made.
By analytically solving the nonlinear gap and Schwinger-Dyson equations, the non-condensate fraction of a weakly interacting Bose-Einstein condensate (BEC) confined between two parallel plates at zero temperature is investigated within the improved Hartree-Fock approximation. It is proved that the finitesize effect increases the non-condensate fraction compared with the one of the same homogeneous BEC. Our result also shows that the non-condensate fraction can be expressed as a sum of two terms: the first term corresponds to the non-condensate fraction of the homogeneous dilute BEC and the other appears because of the confinement. Both terms are universal. A comparison with the experimental data is made. (c) 2023 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available