4.6 Article

Effects of manufacturing errors and micro-groove surfaces on the static and dynamic characteristics of water-lubricated bearings

Journal

PHYSICA SCRIPTA
Volume 98, Issue 9, Pages -

Publisher

IOP Publishing Ltd
DOI: 10.1088/1402-4896/ace93f

Keywords

manufacturing errors; micro-groove surfaces; lubrication performance; water-lubricated bearings

Ask authors/readers for more resources

This study investigates the effects of manufacturing error and micro-groove on the static, dynamic, and stability characteristics of water-lubricated journal bearings. Mathematical models and simulations are used to evaluate the impact of these factors on the film thickness distribution, fluid pressure distribution, bearing capacity, and other parameters. The results show that manufacturing errors and micro-groove significantly affect the fluid film thickness and pressure distribution. The magnitude and type of errors can either improve or degrade the bearing performance, and micro-groove enhances the hydrodynamic effect in the bearing clearance.
In this paper, the effects of manufacturing error and micro-groove on the static, dynamic and stability characteristics of water-lubricated journal bearings (WLJBs) are investigated. Mathematical expressions of manufacturing errors and surface micro-groove are presented, and the Reynolds equations with steady and unsteady states are calculated by using the linear perturbative method and the finite difference technology. According to the developed model, the effects of the waviness magnitude, spatial number, and phase angle for circumferential errors, as well as the concavity, convexity, and taper for axial errors on the film thickness distribution, fluid pressure distribution, bearing capacity, coefficient of friction, side leakage flow rate, attitude angle, stiffness coefficient, damping coefficient, threshold speed and whirl frequency ratio of WLJBs are evaluated. Simulation results demonstrate that fluid film thickness distribution and fluid pressure distribution are significantly affected by manufacturing errors and micro-groove. Compared with axial manufacturing errors, circumferential manufacturing errors cause an inhomogeneous distribution of fluid pressure and morphological transformation in the high-pressure zone. The variation rules for the lubrication performance of bearings with circumferential waviness, concavity, convexity, and taper errors are not consistent at various eccentricity ratios. The magnitude of the concavity and taper errors may have an improving effect on the bearing performance, whereas circumferential waviness and convexity error play a negative role. Moreover, the micro-groove with partial distribution enhances the hydrodynamic effect in the bearing clearance. Numerical simulations can provide a valuable reference for the manufacturing and design of bearing systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available